of course, instead of shaking a pendulum horizontally or vertically, one can go meta and hang a pendulum from a pendulum. let’s see what happens with a such a double pendulum.
that looks chaotic, doesn’t it? but what is meant by chaos? that takes a long time to learn properly. for now, let’s focus on one crucial requirement for chaos: sensitive dependence on initial conditions. this is the idea that nearby initial conditions diverge in behavior exponentially quickly. let’s take a look:
why is the double pendulum chaotic when the single pendulum is not (unless shaken in the right way)? it’s all about topology. the configuration space of a single pendulum is two-dimensional — one for the angle and one for the angular velocity. the configuration space is the tangent bundle of a circle, homeomorphic to an annulus. that’s not enough room for a flow to get chaotic. but the double pendulum has twice the dimension — it’s a 4-d tangent bundle of a torus — and that is plenty of room for chaos to creep in.